Diagnóstico de síntomas depresivos mediante dispositivos móviles: una revisión sistemática
DOI:
https://doi.org/10.37914/riis.v8i2.439Palabras clave:
revisión sistemática, trastorno depresivo, sensores remotos, mHealthResumen
Marco contextual: la depresión es un problema de salud mental generalizado, a menudo infradiagnosticado y subtratado debido a la dependencia de autoinformes subjetivos y al acceso limitado a la atención. Las tecnologías de salud móvil (mHealth), que utilizan sensores de teléfonos inteligentes y portátiles, ofrecen soluciones innovadoras para diagnósticos objetivos y escalables. Objetivos: esta revisión examina la eficacia de los sensores de dispositivos móviles para diagnosticar la depresión, identificar bioseñales relevantes y explorar métodos de diagnóstico. Metodología: se realizó una búsqueda sistemática siguiendo las pautas PRISMA-DTA en MEDLINE/PubMed y Embase, centrándose en la precisión diagnóstica de los sensores mHealth validados contra estándares de oro como DSM-5 o PHQ-9. Resultados: once estudios mostraron que los acelerómetros y los monitores de frecuencia cardíaca son clave para detectar movimiento, actividad y patrones fisiológicos vinculados a la depresión. Los algoritmos de aprendizaje automático, especialmente los bosques aleatorios, lograron una alta precisión diagnóstica. Conclusión: las tecnologías mHealth son prometedoras para el diagnóstico de la depresión, pero se necesitan mejoras en la consistencia metodológica, el tamaño de la muestra y la validación externa para un uso clínico más amplio.
Citas
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing Inc. https://psycnet.apa.org/doi/10.1176/appi.books.9780890425596
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory. Harcourt Brace Jovanovich.
Chao, C. N. J. (2018). Traditional vs internet vs mobile: which is more effective way to reach potential customers. Journal of Business Administration Research, 7(2). https://doi.org/10.5430/jbar.v7n2p1
Cho, C. H., Lee, T., Kim, M. G, In, H. P, Kim, L. & Lee, H. J. (2019). Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. Journal of Medical Internet Research, 21(4). https://doi.org/10.2196/11029
Cornet, V. P. & Holden, R. J. J. (2018). Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics, 77, 120-132. https://doi.org/10.1016/j.jbi.2017.12.008
De Angel, V., Lewis, S., White, K., Oetzmann, C., Leightley, D., Oprea, E., Lavelle, G., Matcham, F., Pace, A., & Mohr, D. C. J. N. (2022). Digital health tools for the passive monitoring of depression: a systematic review of methods. npj Digital Medicine, 5(3). https://doi.org/10.1038/s41746-021-00548-8
Dijkers, M. (2013). Introducing GRADE: a systematic approach to rating evidence in systematic reviews and to guideline development. KT Update, 1(5). https://ktdrr.org/products/update/v1n5/dijkers_grade_ktupdatev1n5.html
Dogrucu, A., Perucic, A., Isaro, A., Ball, D., Toto, E., Rundensteiner, E. A., Agu, E., Davis-Martin, R., & Boudreaux, E. (2020). Moodable: on feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data. Smart Health, 17, 100118.https://doi.org/10.1016/j.smhl.2020.100118
Faurholt-Jepsen, M., Busk, J., Þórarinsdóttir, H., Frost, M., Bardram, J. E., Vinberg, M., & Kessing, L. V. (2019). Objective smartphone data as a potential diagnostic marker of bipolar disorder. Australian and New Zealand Journal of Psychiatry, 53(2). https://doi.org/10.1177/0004867418808900
Galvão, T. F., & Pereira, M. G. (2015). Avaliação da qualidade da evidência de revisões sistemáticas. Epidemiologia e Serviços de Saúde, 24(1), 173-175. https://doi.org/10.5123/S1679-49742015000100019
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56-62. https://doi.org/10.1136/jnnp.23.1.56
Hess, S., Fischel, T., Dolfin, D., Hermesh, H., Horowitz, I., Sela, K., Liberman, A., Nevo, U., & Weizman, A. (2015). The use of smartphone app for early detection of manic or depressive episodes in affective patients. European Neuropsychopharmacology, 25(Suplemento 2), S392. https://doi.org/10.1016/S0924-977X(15)30514-9
Highland, D., & Zhou, G. (2022). A review of detection techniques for depression and bipolar disorder. Smart Health, 24, 100282. https://doi.org/10.1016/j.smhl.2022.100282
Institute for Health Metrics and Evaluation. (n.d.). Global health data exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b
Jacobson, N. C., Weingarden, H., & Wilhelm, S. (2019). Using digital phenotyping to accurately detect depression severity. Journal of Nervous and Mental Disease, 207(10), 893–896. https://doi.org/10.1097/nmd.0000000000001042
Kroenke, K., & Spitzer, R. L. (2002). The PHQ-9: a new depression diagnostic and severity measure. Psychiatric Annals, 32(9), 509-515. https://doi.org/10.3928/0048-5713-20020901-06
Lim, G. Y., Tam, W. W., Lu, Y., Ho, C. S., Zhang, M. W., & Ho, R. C. (2018). Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Scientific Reports, 8(1), 2861. https://doi.org/10.1038/s41598-018-21243-x
Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R., & Takwoingi, Y. (2010). Chapter 10: Analysing and presenting results. In J. J. Deeks, P. M. Bossuyt, & C. Gatsonis (Eds.), Cochrane handbook for systematic reviews of diagnostic test accuracy version 1.0. The Cochrane Collaboration. https://methods.cochrane.org/sites/methods.cochrane.org.sdt/files/uploads/Chapter%2010%20-%20Version%201.0.pdf
Malgaroli, M., Calderon, A., & Bonanno, G. A. (2021). Networks of major depressive disorder: a systematic review. Clinical Psychology Review, 85, 102000. https://doi.org/10.1016/j.cpr.2021.102000
Mastoras, R. E., Iakovakis, D., Hadjidimitriou, S., Charisis, V., Kassie, S., Alsaadi, T., Khandoker, A., & Hadjileontiadis, L. J. (2019). Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports, 9, 13414. https://doi.org/10.1038/s41598-019-50002-9
Masud, M. T., Mamun, M. A., Thapa, K., Lee, D. H., Griffiths, M. D., & Yang, S. H. (2020). Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. Journal of Biomedical Informatics, 103, 103371. https://doi.org/10.1016/j.jbi.2019.103371
McInnes, M. D. F., Moher, D., Thombs, B. D., McGrath, T. A., Bossuyt, P. M., & The PRISMA-DTA Group. (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA statement. JAMA, 319(4), 388–396. https://doi.org/10.1001/jama.2017.19163
Narziev, N., Goh, H., Toshnazarov, K., Lee, S. A., Chung, K. M., & Noh, Y. (2020). STDD: Short-Term Depression Detection with Passive Sensing. Sensors, 20(5), 1396. https://doi.org/10.3390/s20051396
Netto, A. V. (2020). Application of blended care as a mechanism of action in the construction of digital therapeutics. einstein (São Paulo), 18. https://10.31744/einstein_journal/2020MD5640
Netto, A. V., & Petraroli, A. G. (2020). Modelagem de um sistema para o telemonitoramento de idosos com condição crônica baseado em biotelemetria, Journal of Health Informatics, 12(1). https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/691/379
Netto, A. V. (2024). Proposal for the application of a blended care platform for patients with depressive symptoms. Revista Saúde Multidisciplinar, 16(1). https://doi.org/10.53740/rsm.v16i1.742
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. J. S. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(89). https://doi.org/10.1186/s13643-021-01626-4
Sarda, A., Munuswamy, S., Sarda, S., & Subramanian, V. (2019). Using passive smartphone sensing for improved risk stratification of patients with depression and diabetes: cross-sectional observational study. JMIR Mhealth Uhealth, 7(1), e11041. https://doi.org/10.2196/11041
Schueler, S., Schuetz, G. M., & Dewey, M. (2012). The revised QUADAS-2 tool [letter]. Annals of Internal Medicine, 156(4). https://doi.org/10.7326/0003-4819-156-4-201202210-00018
Seppälä, J., De Vita, I., Jämsä, T., Miettunen, J., Isohanni, M., Rubinstein, K., Feldman, Y., Grasa, E., Corripio, I., & Berdun, J. J. J. (2019). Mobile phone and wearable sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. JMIR Mental Health, 6(2), e9819. https://doi.org/10.2196/mental.9819
Snaith, R., & Taylor, C. (1985). Rating scales for depression and anxiety: a current perspective. British Journal of Clinical Pharmacology, 19(S1), 17S-20S. https://doi.org/10.1111/j.1365-2125.1985.tb02737.x
Ware, S., Yue, C., Morillo, R., Lu, J., Shang, C., Bi, J., Kamath, J., Russel, A., Bamis, A., & Wang, B. (2020). Predicting depressive symptoms using smartphone data. Smart Health, 15, 100093. https://doi.org/10.1016/j.smhl.2019.100093
Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., Leeflang, M. M., Sterne, J. A., Bossuyt, P. M., & Medicine, Q. G. J. A. (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8). https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Wolff, R. F., Moons, K. G., Riley, R. D., Whiting, P. F., Westwood, M., Collins, G. S., Reitsma, J. B., Kleijnen, J., & Mallett, S. on behalf of the PROBAST group†. (2019). PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine, 170(1). https://doi.org/10.7326/M18-1376
Zanella-Calzada, L. A., Galván-Tejada, C. E., Chávez-Lamas, N. M., del Carmen Gracia-Cortés, M., Magallanes-Quintanar, R., Celaya-Padilla, J. M., Galván-Tejada, J. I., & Gamboa-Rosales, H. (2019). Feature extraction in motor activity signal: towards depression episodes detection in unipolar and bipolar patients. Diagnostics, 9(1), 8. https://doi.org/10.3390/diagnostics9010008
Zarate, D., Stravopoulos, V., Ball, M., Collier, G., & Jacobson, N. (2022). Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry, 22, 421. https://doi.org/10.1186/s12888-022-04013-y
Zebin, T., Peek, N., & Casson, A. J. (2019). Physical activity-based classification of serious mental illness group participants in the UK Biobank using ensemble dense neural networks [Abstract]. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 1251–1254. https://doi.org/10.1109/EMBC.2019.8857532
Zhou, Q., Lu, S., Wu, Y., & Wang, J. (2020). Property-oriented material design based on a data-driven machine learning technique. The Journal of Physical Chemistry Letters, 11(10). https://doi.org/10.1021/acs.jpclett.0c00665
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Matheus Damasceno, Paulo Abrantes, André Takahata, Antonio Valerio Netto

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.








