Diagnosis of depressive symptoms using mobile devices: a systematic review
DOI:
https://doi.org/10.37914/riis.v8i2.439Keywords:
systematic review, depression disorder, remote sensors, mHealthAbstract
Background: depression is a widespread mental health issue, often underdiagnosed and undertreated due to reliance on subjective self-reports and limited access to care. Mobile health (mHealth) technologies, utilizing smartphone and wearable sensors, offer innovative solutions for objective and scalable diagnostics. Objectives: this review examines the effectiveness of mobile device sensors in diagnosing depression, identifying relevant biosignals, and exploring diagnostic methods. Methodology: a systematic search following PRISMA-DTA guidelines was conducted in MEDLINE/PubMed and Embase, focusing on diagnostic accuracy of mHealth sensors validated against gold standards like DSM-5 or PHQ-9. Results: eleven studies showed that accelerometers and heart rate monitors are key in detecting movement, activity, and physiological patterns linked to depression. Machine learning algorithms, especially random forests, achieved high diagnostic accuracy. Conclusion: mHealth technologies hold promise for depression diagnostics, but improvements in methodological consistency, sample size, and external validation are necessary for broader clinical use.
References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing Inc. https://psycnet.apa.org/doi/10.1176/appi.books.9780890425596
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory. Harcourt Brace Jovanovich. DOI: https://doi.org/10.1037/t00742-000
Chao, C. N. J. (2018). Traditional vs internet vs mobile: which is more effective way to reach potential customers. Journal of Business Administration Research, 7(2). https://doi.org/10.5430/jbar.v7n2p1 DOI: https://doi.org/10.5430/jbar.v7n2p1
Cho, C. H., Lee, T., Kim, M. G, In, H. P, Kim, L. & Lee, H. J. (2019). Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. Journal of Medical Internet Research, 21(4). https://doi.org/10.2196/11029 DOI: https://doi.org/10.2196/11029
Cornet, V. P. & Holden, R. J. J. (2018). Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics, 77, 120-132. https://doi.org/10.1016/j.jbi.2017.12.008 DOI: https://doi.org/10.1016/j.jbi.2017.12.008
De Angel, V., Lewis, S., White, K., Oetzmann, C., Leightley, D., Oprea, E., Lavelle, G., Matcham, F., Pace, A., & Mohr, D. C. J. N. (2022). Digital health tools for the passive monitoring of depression: a systematic review of methods. npj Digital Medicine, 5(3). https://doi.org/10.1038/s41746-021-00548-8 DOI: https://doi.org/10.1038/s41746-021-00548-8
Dijkers, M. (2013). Introducing GRADE: a systematic approach to rating evidence in systematic reviews and to guideline development. KT Update, 1(5). https://ktdrr.org/products/update/v1n5/dijkers_grade_ktupdatev1n5.html
Dogrucu, A., Perucic, A., Isaro, A., Ball, D., Toto, E., Rundensteiner, E. A., Agu, E., Davis-Martin, R., & Boudreaux, E. (2020). Moodable: on feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data. Smart Health, 17, 100118. https://doi.org/10.1016/j.smhl.2020.100118 DOI: https://doi.org/10.1016/j.smhl.2020.100118
Faurholt-Jepsen, M., Busk, J., Þórarinsdóttir, H., Frost, M., Bardram, J. E., Vinberg, M., & Kessing, L. V. (2019). Objective smartphone data as a potential diagnostic marker of bipolar disorder. Australian and New Zealand Journal of Psychiatry, 53(2). https://doi.org/10.1177/0004867418808900 DOI: https://doi.org/10.1177/0004867418808900
Galvão, T. F., & Pereira, M. G. (2015). Avaliação da qualidade da evidência de revisões sistemáticas. Epidemiologia e Serviços de Saúde, 24(1), 173-175. https://doi.org/10.5123/S1679-49742015000100019 DOI: https://doi.org/10.5123/S1679-49742015000100019
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56-62. https://doi.org/10.1136/jnnp.23.1.56 DOI: https://doi.org/10.1136/jnnp.23.1.56
Hess, S., Fischel, T., Dolfin, D., Hermesh, H., Horowitz, I., Sela, K., Liberman, A., Nevo, U., & Weizman, A. (2015). The use of smartphone app for early detection of manic or depressive episodes in affective patients. European Neuropsychopharmacology, 25(Suplemento 2), S392. https://doi.org/10.1016/S0924-977X(15)30514-9 DOI: https://doi.org/10.1016/S0924-977X(15)30514-9
Highland, D., & Zhou, G. (2022). A review of detection techniques for depression and bipolar disorder. Smart Health, 24, 100282. https://doi.org/10.1016/j.smhl.2022.100282 DOI: https://doi.org/10.1016/j.smhl.2022.100282
Institute for Health Metrics and Evaluation. (n.d.). Global health data exchange (GHDx). http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b
Jacobson, N. C., Weingarden, H., & Wilhelm, S. (2019). Using digital phenotyping to accurately detect depression severity. Journal of Nervous and Mental Disease, 207(10), 893–896. https://doi.org/10.1097/nmd.0000000000001042 DOI: https://doi.org/10.1097/NMD.0000000000001042
Kroenke, K., & Spitzer, R. L. (2002). The PHQ-9: a new depression diagnostic and severity measure. Psychiatric Annals, 32(9), 509-515. https://doi.org/10.3928/0048-5713-20020901-06 DOI: https://doi.org/10.3928/0048-5713-20020901-06
Lim, G. Y., Tam, W. W., Lu, Y., Ho, C. S., Zhang, M. W., & Ho, R. C. (2018). Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Scientific Reports, 8(1), 2861. https://doi.org/10.1038/s41598-018-21243-x DOI: https://doi.org/10.1038/s41598-018-21243-x
Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R., & Takwoingi, Y. (2010). Chapter 10: Analysing and presenting results. In J. J. Deeks, P. M. Bossuyt, & C. Gatsonis (Eds.), Cochrane handbook for systematic reviews of diagnostic test accuracy version 1.0. The Cochrane Collaboration. https://methods.cochrane.org/sites/methods.cochrane.org.sdt/files/uploads/Chapter%2010%20-%20Version%201.0.pdf
Malgaroli, M., Calderon, A., & Bonanno, G. A. (2021). Networks of major depressive disorder: a systematic review. Clinical Psychology Review, 85, 102000. https://doi.org/10.1016/j.cpr.2021.102000 DOI: https://doi.org/10.1016/j.cpr.2021.102000
Mastoras, R. E., Iakovakis, D., Hadjidimitriou, S., Charisis, V., Kassie, S., Alsaadi, T., Khandoker, A., & Hadjileontiadis, L. J. (2019). Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports, 9, 13414. https://doi.org/10.1038/s41598-019-50002-9 DOI: https://doi.org/10.1038/s41598-019-50002-9
Masud, M. T., Mamun, M. A., Thapa, K., Lee, D. H., Griffiths, M. D., & Yang, S. H. (2020). Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. Journal of Biomedical Informatics, 103, 103371. https://doi.org/10.1016/j.jbi.2019.103371 DOI: https://doi.org/10.1016/j.jbi.2019.103371
McInnes, M. D. F., Moher, D., Thombs, B. D., McGrath, T. A., Bossuyt, P. M., & The PRISMA-DTA Group. (2018). Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA statement. JAMA, 319(4), 388–396. https://doi.org/10.1001/jama.2017.19163 DOI: https://doi.org/10.1001/jama.2017.19163
Narziev, N., Goh, H., Toshnazarov, K., Lee, S. A., Chung, K. M., & Noh, Y. (2020). STDD: Short-Term Depression Detection with Passive Sensing. Sensors, 20(5), 1396. https://doi.org/10.3390/s20051396 DOI: https://doi.org/10.3390/s20051396
Netto, A. V. (2020). Application of blended care as a mechanism of action in the construction of digital therapeutics. einstein (São Paulo), 18. https://10.31744/einstein_journal/2020MD5640 DOI: https://doi.org/10.31744/einstein_journal/2020MD5640
Netto, A. V., & Petraroli, A. G. (2020). Modelagem de um sistema para o telemonitoramento de idosos com condição crônica baseado em biotelemetria, Journal of Health Informatics, 12(1). https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/691/379
Netto, A. V. (2024). Proposal for the application of a blended care platform for patients with depressive symptoms. Revista Saúde Multidisciplinar, 16(1). https://doi.org/10.53740/rsm.v16i1.742 DOI: https://doi.org/10.53740/rsm.v16i1.742
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. J. S. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(89). https://doi.org/10.1186/s13643-021-01626-4 DOI: https://doi.org/10.1186/s13643-021-01626-4
Sarda, A., Munuswamy, S., Sarda, S., & Subramanian, V. (2019). Using passive smartphone sensing for improved risk stratification of patients with depression and diabetes: cross-sectional observational study. JMIR Mhealth Uhealth, 7(1), e11041. https://doi.org/10.2196/11041 DOI: https://doi.org/10.2196/11041
Schueler, S., Schuetz, G. M., & Dewey, M. (2012). The revised QUADAS-2 tool [letter]. Annals of Internal Medicine, 156(4). https://doi.org/10.7326/0003-4819-156-4-201202210-00018 DOI: https://doi.org/10.7326/0003-4819-156-4-201202210-00018
Seppälä, J., De Vita, I., Jämsä, T., Miettunen, J., Isohanni, M., Rubinstein, K., Feldman, Y., Grasa, E., Corripio, I., & Berdun, J. J. J. (2019). Mobile phone and wearable sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. JMIR Mental Health, 6(2), e9819. https://doi.org/10.2196/mental.9819 DOI: https://doi.org/10.2196/mental.9819
Snaith, R., & Taylor, C. (1985). Rating scales for depression and anxiety: a current perspective. British Journal of Clinical Pharmacology, 19(S1), 17S-20S. https://doi.org/10.1111/j.1365-2125.1985.tb02737.x DOI: https://doi.org/10.1111/j.1365-2125.1985.tb02737.x
Ware, S., Yue, C., Morillo, R., Lu, J., Shang, C., Bi, J., Kamath, J., Russel, A., Bamis, A., & Wang, B. (2020). Predicting depressive symptoms using smartphone data. Smart Health, 15, 100093. https://doi.org/10.1016/j.smhl.2019.100093 DOI: https://doi.org/10.1016/j.smhl.2019.100093
Whiting, P. F., Rutjes, A. W., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., Leeflang, M. M., Sterne, J. A., Bossuyt, P. M., & Medicine, Q. G. J. A. (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8). https://doi.org/10.7326/0003-4819-155-8-201110180-00009 DOI: https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Wolff, R. F., Moons, K. G., Riley, R. D., Whiting, P. F., Westwood, M., Collins, G. S., Reitsma, J. B., Kleijnen, J., & Mallett, S. on behalf of the PROBAST group†. (2019). PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of Internal Medicine, 170(1). https://doi.org/10.7326/M18-1376 DOI: https://doi.org/10.7326/M18-1376
Zanella-Calzada, L. A., Galván-Tejada, C. E., Chávez-Lamas, N. M., del Carmen Gracia-Cortés, M., Magallanes-Quintanar, R., Celaya-Padilla, J. M., Galván-Tejada, J. I., & Gamboa-Rosales, H. (2019). Feature extraction in motor activity signal: towards depression episodes detection in unipolar and bipolar patients. Diagnostics, 9(1), 8. https://doi.org/10.3390/diagnostics9010008 DOI: https://doi.org/10.3390/diagnostics9010008
Zarate, D., Stravopoulos, V., Ball, M., Collier, G., & Jacobson, N. (2022). Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry, 22, 421. https://doi.org/10.1186/s12888-022-04013-y DOI: https://doi.org/10.1186/s12888-022-04013-y
Zebin, T., Peek, N., & Casson, A. J. (2019). Physical activity-based classification of serious mental illness group participants in the UK Biobank using ensemble dense neural networks [Abstract]. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 1251–1254. https://doi.org/10.1109/EMBC.2019.8857532 DOI: https://doi.org/10.1109/EMBC.2019.8857532
Zhou, Q., Lu, S., Wu, Y., & Wang, J. (2020). Property-oriented material design based on a data-driven machine learning technique. The Journal of Physical Chemistry Letters, 11(10). https://doi.org/10.1021/acs.jpclett.0c00951ttps://doi.org/10.1038/s41598-018-21243-x DOI: https://doi.org/10.1021/acs.jpclett.0c00665
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Matheus Damasceno, Paulo Abrantes, André Takahata, Antonio Valerio Netto

This work is licensed under a Creative Commons Attribution 4.0 International License.








