Resumen
Marco contextual: La implantación de tecnologías basadas en Inteligencia Artificial (IA) en el sector sanitario, en particular el aprendizaje automático (AM), ha tenido un importante efecto transformador. Su uso mejora la predicción, clasificación y diagnóstico de enfermedades, beneficiando tanto a los usuarios como a los profesionales sanitarios. Objetivo: Mapear las herramientas de ML para la gestión de enfermedades crónicas, con relevancia para los cuidados de enfermería a personas con enfermedades crónicas. Metodología: Revisión de alcance basada en las recomendaciones del Instituto Joanna Briggs. Se utilizaron las bases de datos MEDLINE Complete vía PUBMED, CINAHL Complete vía EBSCO, SCOPUS, OpenGrey, RCAAP y DART-Europe, sin límite de tiempo. Resultados: Se incluyeron siete artículos y se identificaron 9 herramientas de IA asociadas a la gestión de enfermedades crónicas, a saber, la enfermedad renal crónica, la enfermedad pulmonar obstructiva crónica, la hepatitis C, la insuficiencia cardiaca y la insuficiencia venosa crónica. Conclusión: Las herramientas identificadas tienen potencial para contribuir a la mejora de los cuidados de enfermería, especialmente en la identificación de factores de riesgo asociados a enfermedades crónicas, la detección precoz de exacerbaciones, el seguimiento continuo y la evaluación de la eficacia del tratamiento y el apoyo a la toma de decisiones clínicas.
Citas
Alzghoul, B. N., Reddy, R., Chizinga, M., Innabi, A., Zou, B., Papierniak, E. S., & Faruqi, I. (2020). Pulmonary Embolism in Acute Asthma Exacerbation: Clinical Characteristics, Prediction Model and Hospital Outcomes. Lung, 198(4), 661–669. https://doi.org/10.1007/s00408-020-00363-0
Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in the chronic disease diagnosis. Journal of Personalized Medicine, 10(2). https://doi.org/10/ghb3w5
Chan, K. S., Liang, S., Cho, Y. T., Chan, Y. M., Tan, A. H. M., Muthuveerappa, S., Lai, T. P., Goh, C. C., Joseph, A., Hong, Q., Yong, E., Zhang, L., Chong, L. R. C., Tan, G. W. L., Chandrasekar, S., & Lo, Z. J. (2022). Clinical validation of a MACHINE‐LEARNING ‐based handheld 3‐DIMENSIONAL infrared wound imaging device in venous leg ulcers. International Wound Journal, 19(2), 436–446. https://doi.org/10.1111/iwj.13644
Chatterjee, A., Gerdes, M. W., & Martinez, S. G. (2020). Identification of Risk Factors Associated with Obesity and Overweight—A Machine Learning Overview. Sensors, 20(9), 2734. https://doi.org/10.3390/s20092734
Corporation for Digital Scholarship and Roy Rosenzweig Center for & History and New Media. (2021). Zotero | Your personal research assistant (Zotero 5.0.94). https://www.zotero.org/
Du, A., Shi, X., Guo, X., Pei, Q., Ding, Y., Zhou, W., Lu, Q., & Shi, H. (2021). Assessing the Adequacy of Hemodialysis Patients via the Graph-Based Takagi-Sugeno-Kang Fuzzy System. Computational and Mathematical Methods in Medicine, 2021, 1–11. https://doi.org/10.1155/2021/9036322
Habehh, H., & Gohel, S. (2021). Machine Learning in Healthcare. Current Genomics, 22(4), 291–300. https://doi.org/10/grvfd6
Helm, M., Schwigoz, A., Haeberle, H., Karnuta, J., Schaffer, J., Krebs, V., Ramkumar, P. (2020). The Use of Technology in Orthopaedic Surgery—Intraoperative and Post-Operative Management. (S. Science, Ed.) Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions, pp. 69-76. https://doi.org/10.1007/s12178-020-09600-8
Jimma, B. L. (2023). Artificial intelligence in healthcare: A bibliometric analysis. Telematics and Informatics Reports, 9, 100041. https://doi.org/10.1016/j.teler.2023.100041
Jørgensen, T. S. H., Allore, H., Elman, M. R., Nagel, C., & Quiñones, A. R. (2022). The importance of chronic conditions for potentially avoidable hospitalizations among non-Hispanic Black and non-Hispanic White older adults in the US: A cross-sectional observational study. BMC Health Services Research, 22(1), 468. https://doi.org/10.1186/s12913-022-07849-y
Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X.-J. (2018). A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability, 10(1), Art. 1. https://doi.org/10/gc4c4w
Lobo, L. (2018). Inteligência artificial, o Futuro da Medicina e a Educação Médica. (R. b. med., Ed.) Artificial Intelligence, the Future of Medicine and Medical Education, 42(3), pp. 3-8. http://dx.doi.org/10.1590/1981-52712015v42n3RB20180115EDITORIAL1
Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology, 18(1), 143. https://doi.org/10/gfq8w2
Nakayama, J. Y., Ho, J., Cartwright, E., Simpson, R., & Hertzberg, V. S. (2021). Predictors of progression through the cascade of care to a cure for hepatitis C patients using decision trees and random forests. Computers in Biology and Medicine, 134, 104461. https://doi.org/10.1016/j.compbiomed.2021.104461
Organização Cooperação Desenvolvimento Económico (OCDE). (2021). Estado da Saúde na UE, Portugal, Perfil de saúde do país 2021. OECD e WHO. Organização para Cooperação e Desenvolvimento Económico.
Organização Pan-Americana de Saúde (OPAS). (2020). OPAS 120 Noticias. (O. P.-A. Saúde, Produtor) Obtido em 21 de fevereiro de 2023, de OMS revela principais causas de morte e incapacidade em todo o mundo entre 2000 e 2019: https://www.paho.org/pt/noticias/9-12-2020-oms-revela-principais-causas-morte-e-incapacidade-em-todo-mundo-entre-2000-e
Peters, M. D. J., Godfrey, C., McInerney, P., Khalil, H., Larsen, P., Marnie, C., Pollock, D., Tricco, A. C., & Munn, Z. (2022). Best practice guidance and reporting items for the development of scoping review protocols. JBI Evidence Synthesis, 20(4), 953. https://doi.org/10/gq4nkn
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. The New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10/gfzk8r
Raymond, L., Castonguay, A., Doyon, O., & Paré, G. (22 de março de 2022). Applied Nursing Reasearch. (E. Inc., Ed.) Nurse practitioners' involvement and experience with AI-based health technologies: A systematic review, 66(0897-1897), pp. 1-8. doi:https://doi.org/10.1016/j.apnr.2022.151604
Santos, A., & Campos, R. (2022). Preservação dos direitos humanos no uso de técnica de machine learning na efetivação de políticas públicas em saúde global. Em A. Santos, & R. Campos, Ciências da Saúde: Desafios, Perspectivas e Possibilidades (p. 154). Científica Digital. https://10.37885/220509049
Simeone, O. (2018). A Very Brief Introduction to Machine Learning With Applications to Communication Systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648–664. https://doi.org/10/gf6ktd
Su, D., Zhang, X., He, K., Chen, Y., & Wu, N. (2022). Individualized prediction of chronic kidney disease for the elderly in longevity areas in China: Machine learning approaches. Frontiers in Public Health, 10, 998549. https://doi.org/10.3389/fpubh.2022.998549
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10/gfd8vk
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Derechos de autor 2023 Igor Soares-Pinto, Marta Sofia Ferreira Sá, Ana Margarida Martins Bastos Alves, Maria Teresa Barbosa Pinto Sousa, Ana Vanessa Fernandes Carvalho, Cátia Moreira